Ultralow thermal conductivity in organoclay nanolaminates synthesized via simple self-assembly.

نویسندگان

  • Mark D Losego
  • Ian P Blitz
  • Richard A Vaia
  • David G Cahill
  • Paul V Braun
چکیده

Because interfaces impede phonon transport of thermal energy, nanostructuring can transform fully dense solids into ultralow thermal conductivity materials. Here we report a simple self-assembly approach to synthesizing organoclay nanolaminates with cross-planar thermal conductivities below 0.10 W m(-1) K(-1)-a 5-fold decrease compared to unmodified clay. These organoclays are produced via alkylammonium cation exchange with colloidally dispersed montmorillonite clay sheets followed by solvent casting. Time-domain thermoreflectance (TDTR) is used to evaluate the thermal conductivity of the organoclay nanolaminates. Variations in both organic layer thickness and cation chemistry are investigated. At these interface densities (1.0-1.5 interfaces/nm), we demonstrate that thermal conductivity is relatively independent of nanolaminate spacing. A simple series resistance model describes the behavior and gives an interfacial thermal conductance value of ≈150 MW m(-2) K(-1) for the organic/clay interface, consistent with similar organic-inorganic interfaces. The wide range of compositional substitutions and structural variations possible in these materials, make organoclays a versatile new platform for investigating the underlying physics of nanolaminate structures.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of adding Nanoclay (Cloisite-30B) on the Proton Conductivity of Sulfonated Polybenzimidazole

A novel sulfonated polybenzimidazole/organoclay (Cloisite-30B) (SPBI/clay) nanocomposite membranes was successfully synthesized based on aromatic diacide (1) and diaminobenzidine. Nanocomposite membranes were fabricated using 1, 4-bis (hydroxymethyl) benzene (BHMB) as cross-linker, and Cloisite-30B organoclay as the pseudo cross-linker. The cross-linked SPBI/clay nanocomposite membranes were pr...

متن کامل

Ultralow thermal conductivity in all-inorganic halide perovskites.

Controlling the flow of thermal energy is crucial to numerous applications ranging from microelectronic devices to energy storage and energy conversion devices. Here, we report ultralow lattice thermal conductivities of solution-synthesized, single-crystalline all-inorganic halide perovskite nanowires composed of CsPbI3 (0.45 ± 0.05 W·m-1·K-1), CsPbBr3 (0.42 ± 0.04 W·m-1·K-1), and CsSnI3 (0.38 ...

متن کامل

Ba5Cu8In2S12: a quaternary semiconductor with a unique 3D copper-rich framework and ultralow thermal conductivity.

A novel quaternary sulfide, Ba5Cu8In2S12 (1), has been successfully synthesized via a high-temperature solid-state reaction. It contains Cu8S10S4/2 clusters as basic building blocks, which are connected to one another by discrete In3+ ions to generate a 3D copper-rich framework, where the Ba2+ cations reside. Interestingly, such large clusters that are fused by five crystallographically indepen...

متن کامل

Seminar Talk

Thermoelectrics (TE) is a green renewable energy technology which plays an import role in power generation due to its potential in generating electricity out of waste heat. The challenge for the development of thermoelectric is its low conversion efficiency. The efficiency of thermoelectric materials is related to the figure of merit, which is expressed as ZT = S2σT/, where S is the Seebeck coe...

متن کامل

Ultralow thermal conductivity of multilayers with highly dissimilar Debye temperatures.

Thermal transport in multilayers (MLs) has attracted significant interest and shows promising applications. Unlike their single-component counterparts, MLs exhibit a thermal conductivity that can be effectively engineered by both the number density of the layers and the interfacial thermal resistance between layers, with the latter being highly tunable via the contrast of acoustic properties of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nano letters

دوره 13 5  شماره 

صفحات  -

تاریخ انتشار 2013